Dijital Tüketici Yorumlarında Duygu Analizi ile Bölgesel Memnuniyet Farklılıklarının İncelenmesi
DOI:
https://doi.org/10.63556/tisej.2025.1649Anahtar Kelimeler:
Tüketici Davranışı- Memmuniyet- Duygu Analizi- Bölgesel Farklılıklar- Tüketici YorumlarıÖzet
Bu araştırma, Komagene, Maydanoz Döner ve Popeyes markalarına ait dijital tüketici yorumlarını, Türkiye’nin yedi coğrafi bölgesinden seçilen on dört il özelinde duygu analizi yöntemiyle inceleyerek, tüketici memnuniyetinin bölgesel farklılıklarını kapsamlı bir şekilde ortaya koymayı hedeflemiştir. Çalışmada MAXQDA ve Excel araçları kullanılarak olumlu ve olumsuz yorumlar sistematik biçimde ayrıştırılmış, bölgesel tüketici memnuniyeti farklı boyutlarıyla detaylı olarak değerlendirilmiştir. Bulgular, Komagene’nin İç Anadolu ve Marmara bölgelerinde yüksek olumlu yorum oranları ile öne çıktığını, Maydanoz Döner’in Karadeniz ve Doğu Anadolu bölgelerinde hizmet kalitesi ve memnuniyet odaklı olumlu performans sergilediğini göstermiştir. Popeyes ise çoğu bölgede düşük olumlu ve yüksek olumsuz yorum oranları ile geri planda kalmış, olumsuz yorumlar ağırlıklı olarak hizmet sorunları ve memnuniyetsizlikten kaynaklanmıştır. Bölgesel analiz, markalar arasında ve bölgeler arasında belirgin farklılıklar ortaya koymuş, memnuniyet ve hizmet kalitesi odaklı
Öz
Bu araştırma, Komagene, Maydanoz Döner ve Popeyes markalarına ait dijital tüketici yorumlarını, Türkiye’nin yedi coğrafi bölgesinden seçilen on dört il özelinde duygu analizi yöntemiyle inceleyerek, tüketici memnuniyetinin bölgesel farklılıklarını kapsamlı bir şekilde ortaya koymayı hedeflemiştir. Çalışmada MAXQDA ve Excel araçları kullanılarak olumlu ve olumsuz yorumlar sistematik biçimde ayrıştırılmış, bölgesel tüketici memnuniyeti farklı boyutlarıyla detaylı olarak değerlendirilmiştir. Bulgular, Komagene’nin İç Anadolu ve Marmara bölgelerinde yüksek olumlu yorum oranları ile öne çıktığını, Maydanoz Döner’in Karadeniz ve Doğu Anadolu bölgelerinde hizmet kalitesi ve memnuniyet odaklı olumlu performans sergilediğini göstermiştir. Popeyes ise çoğu bölgede düşük olumlu ve yüksek olumsuz yorum oranları ile geri planda kalmış, olumsuz yorumlar ağırlıklı olarak hizmet sorunları ve memnuniyetsizlikten kaynaklanmıştır. Bölgesel analiz, markalar arasında ve bölgeler arasında belirgin farklılıklar ortaya koymuş, memnuniyet ve hizmet kalitesi odaklı olumlu geri bildirimler ile hizmet sorunu ve memnuniyetsizlik odaklı olumsuz yorumların markaların stratejik konumlarını etkilediğini göstermiştir. Araştırma, Türkiye genelinde tüm coğrafi bölgeleri kapsayan ve söz konusu üç markayı ele alan ilk dijital yorum analizine dayanan çalışma olma özelliği taşımakta olup, işletmelere strateji geliştirme imkânı sunarken, literatüre özgün bir bölgesel perspektif kazandırmaktadır.
Kaynaklar
Abubakar, A. M., & Ilkan, M. (2016). Impact of online WOM on destination trust and intention to travel: A medical tourism perspective. Journal of Destination Marketing & Management, 5(3), 192-201. https://doi.org/10.1016/j.jdmm.2015.12.005
Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A. R., Knox, K., ... & Ibrahim, O. (2019). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331-343. https://doi.org/10.1016/j.jretconser.2019.06.014
Brunner, M., Tripathi, S., Gundolf, K., Bachmann, N., Thienemann, A. K., Tüzün, A., & Jodlbauer, H. (2025). Enhancing customer satisfaction through digitalization: Past, present and possible future approaches. Procedia Computer Science, 253, 2929-2940. https://doi.org/10.1016/j.procs.2025.02.017
Chakraborty, I., Kim, M., & Sudhir, K. (2022). Attribute sentiment scoring with online text reviews: Accounting for language structure and missing attributes. Journal of Marketing Research, 59(3), 600-622. https://doi.org/10.1177/00222437211052500
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of marketing research, 43(3), 345-354. https://doi.org/10.1509/jmkr.43.3.345
Chong, A. Y. L., Ch’ng, E., Liu, M. J., & Li, B. (2017). Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews. International Journal of Production Research, 55(17), 5142-5156. https://doi.org/10.1080/00207543.2015.1066519
Chu, S. C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International journal of Advertising, 30(1), 47-75. https://doi.org/10.2501/IJA-30-1-047-075
Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
Cui, G., Lui, H. K., & Guo, X. (2012). The effect of online consumer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39-58. https://doi.org/10.2753/JEC1086-4415170102
Dai, H., Luo, X. R., Liao, Q., & Cao, M. (2015). Explaining consumer satisfaction of services: The role of innovativeness and emotion in an electronic mediated environment. Decision Support Systems, 70, 97-106. https://doi.org/10.1016/j.dss.2014.12.003
Davari, D., Vayghan, S., Jang, S., & Erdem, M. (2022). Hotel experiences during the COVID-19 pandemic: high-touch versus high-tech. International Journal of Contemporary Hospitality Management, 34(4), 1312-1330. https://doi.org/10.1108/IJCHM-07-2021-0919
Davis, A., & Khazanchi, D. (2008). An empirical study of online word of mouth as a predictor for multi‐product category e‐commerce sales. Electronic markets, 18(2), 130-141. https://digitalcommons.unomaha.edu/isqafacpub/17
Eslami, S. P., & Ghasemaghaei, M. (2018). Effects of online review positiveness and review score inconsistency on sales: A comparison by product involvement. Journal of Retailing and Consumer Services, 45, 74-80. https://doi.org/10.1016/j.jretconser.2018.08.003
Fang, Y. H. (2014). Beyond the credibility of electronic word of mouth: Exploring eWOM adoption on social networking sites from affective and curiosity perspectives. International journal of electronic commerce, 18(3), 67-102. https://doi.org/10.2753/JEC1086-4415180303
Geetha, M., Singha, P., & Sinha, S. (2017). Relationship between customer sentiment and online customer ratings for hotels-An empirical analysis. Tourism Management, 61, 43-54. https://doi.org/10.1016/j.tourman.2016.12.022
Gelashvili, V., Martínez-Navalón, J. G., DeMatos, N., & de Brito Correia, M. (2024). Technological transformation: The importance of E-WOM and perceived privacy in the context of opinion platforms. Technological Forecasting and Social Change, 205, 123472. https://doi.org/10.1016/j.techfore.2024.123472
Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545–560. https://doi.org/10.1287/mksc.1040.0071
Guo, F., Chen, J., Li, M., Ye, G., & Li, J. (2022). How do expert reviews and consumer reviews affect purchasing decisions? An event-related potential study. Journal of Neuroscience, Psychology, and Economics, 15(2), 101. https://doi.org/10.1037/npe0000157
Gvili, Y., & Levy, S. (2016). Antecedents of attitudes toward eWOM communication: differences across channels. Internet Research, 26(5), 1030-1051. https://doi.org/10.1108/IntR-08-2014-0201
Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277-1288. https://doi.org/10.1177/10497323052766
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? The mediating role of online review sentiments on product sales. Decision support systems, 57, 42-53. https://doi.org/10.1016/j.dss.2013.07.009
Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and management, 9(3), 201-214. https://ink.library.smu.edu.sg/sis_research
Ketelaar, P. E., Willemsen, L. M., Sleven, L., & Kerkhof, P. (2015). The good, the bad, and the expert: how consumer expertise affects review valence effects on purchase intentions in online product reviews. Journal of Computer-Mediated Communication, 20(6), 649-666. https://doi.org/10.1111/jcc4.12139
Kılıçer, S., & Şamlı, R. (2023). E-Ticaret Sitelerindeki Türkçe Ürün Yorumları Üzerine Makine Öğrenmesi Algoritmaları ile Duygu Analizi. Veri Bilimi, 6(2), 15-23.
Koruyan, K. (2025). Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. Journal of Intelligent Systems: Theory and Applications, 8(1), 47-62. https://doi.org/10.38016/jista.1543187
Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice and using software. Sage.
Li, C., Liu, Y., & Du, R. (2021). The effects of review presentation formats on consumers' purchase intention. Journal of Global Information Management (JGIM), 29(6), 1-20. https://www.igi-global.com/gateway/article/280343
Liao, S. H., Hu, D. C., Chung, Y. C., & Huang, A. P. (2021). Risk and opportunity for online purchase intention–A moderated mediation model investigation. Telematics and Informatics, 62, 101621. https://doi.org/10.1016/j.tele.2021.101621
Liu, Y., Wan, Y., Shen, X., Ye, Z., & Wen, J. (2021). Product customer satisfaction measurement based on multiple online consumer review features. Information, 12(6), 234. https://doi.org/10.3390/info12060234
Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solution. Klagenfurt. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173
Moe, W. W., & Schweidel, D. A. (2012). Online product opinions: Incidence, evaluation, and evolution. Marketing Science, 31(3), 372-386. https://doi.org/10.1287/mksc.1110.0662
Muradi, R., & Akbıyık, A. (2020). Kültürel Farklılıkların Müşteri Memnuniyeti Üzerindeki Rolü: Turizm Sektöründe Çevrimiçi Yorumların Analizi. Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20(1), 229-254. https://doi.org/10.11616/basbed.v20i53206.582828
Nakayama, M., & Wan, Y. (2019). The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews. Information & Management, 56(2), 271-279. https://doi.org/10.1016/j.im.2018.09.00
Qiu, K., & Zhang, L. (2024). How online reviews affect purchase intention: A meta-analysis across contextual and cultural factors. Data and Information Management, 8(2), 100058. https://doi.org/10.1016/j.dim.2023.100058
Onishi, H., & Manchanda, P. (2012). Marketing activity, blogging and sales. International Journal of Research in Marketing, 29(3), 221-234. https://doi.org/10.1016/j.ijresmar.2011.11.003
Özen, İ. A. (2021). Yerel restoranların değerlendirilmesinde fikir madenciliği: Gaziantep örneği. Journal of Tourism and Gastronomy Studies, 9(1), 377–391.
Papathanassis, A., & Knolle, F. (2011). Exploring the adoption and processing of online holiday reviews: A grounded theory approach. Tourism management, 32(2), 215-224. https://doi.org/10.1016/j.tourman.2009.12.005
Peña-García, N., Losada-Otálora, M., Auza, D. P., & Cruz, M. P. (2024). Reviews, trust, and customer experience in online marketplaces: the case of Mercado Libre Colombia. Frontiers in Communication, 9, 1460321. https://doi.org/10.3389/fcomm.2024.1460321
Perçin, N. Ş., & Çay, G. (2025). Konya ilindeki yöresel restoranlara yönelik e-şikâyetlerin içerik analizi yöntemi ile değerlendirilmesi. Tourism and Recreation, 7(1), 11-24. https://doi.org/10.53601/tourismandrecreation.1491636
Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electronic commerce research and applications, 11(6), 548-559. https://doi.org/10.1016/j.elerap.2012.06.003
Rahim, A. I. A., Ibrahim, M. I., Chua, S. L., & Musa, K. I. (2021, December). Hospital facebook reviews analysis using a machine learning sentiment analyzer and quality classifier. In Healthcare (Vol. 9, No. 12, p. 1679). MDPI. https://doi.org/10.3390/healthcare9121679
Rahman, A., Khan, M. A., Bishnu, K. K., Rozario, U., Ishraq, A., Mridha, M. F., & Aung, Z. (2025). Multilingual sentiment analysis in restaurant reviews using aspect focused learning. Scientific Reports, 15(1), 28371. https://www.nature.com/articles/s41598-025-12464-y
Ruiz-Alba, J. L., Abou-Foul, M., Nazarian, A., & Foroudi, P. (2022). Digital platforms: customer satisfaction, eWOM and the moderating role of perceived technological innovativeness. Information Technology & People, 35(7), 2470-2499. https://doi.org/10.1108/ITP-07-2021-0572
Saleem, U., Yi, S., Bilal, M., Topor, D. I., & Căpuṣneanu, S. (2022). The impact of website quality on customer satisfaction and eWOM in online purchase intention: The moderating role of gender in risk-taking. Frontiers in Psychology, 13, 945707. https://doi.org/10.3389/fpsyg.2022.945707
Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
Schuckert, M., Liu, X., & Law, R. (2015). A segmentation of online reviews by language groups: How English and non-English speakers rate hotels differently. International Journal of Hospitality Management, 48, 143-149. https://doi.org/10.1016/j.ijhm.2014.12.007
Sean, J., SooCheong, J., Tang, C. H. H., Behnke, C., & Lee, S. K. (2025). Sentiment-driven agglomeration in ethnic restaurants. International Journal of Hospitality Management, 130, 104249. https://doi.org/10.1016/j.ijhm.2025.104249
Seongseop Kim, S., & McKercher, B. (2011). The collective effect of national culture and tourist culture on tourist behavior. Journal of Travel & Tourism Marketing, 28(2), 145-164. https://doi.org/10.1080/10548408.2011.545744
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of marketing research, 51(4), 463-479. https://doi.org/10.1509/jmr.12.0106
Tuzcu, S. (2020). Çevrimiçi kullanıcı yorumlarının duygu analizi ile sınıflandırılması. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 1(2), 1-5.
TÜİK (2024). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2024 (Access Date: 01.08.2025, https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayal%C4%B1-N%C3%BCfus-Kay%C4%B1t-Sistemi-Sonu%C3%A7lar%C4%B1-2024-53783&dil=1)
Özalp, Ü. İ., & Gökcek, H. A. (2023). The Effect of Negative Online Consumer Reviews on Purchase Intention: Information Processing View. Turkish Journal of Marketing Research, 2(2), 127-143.
Valenzuela, S., Park, N., & Kee, K. F. (2009). Is there social capital in a social network site? Facebook use and college students' life satisfaction, trust, and participation. Journal of computer-mediated communication, 14(4), 875-901. https://doi.org/10.1111/j.1083-6101.2009.01474.x
Watson, F., & Wu, Y. (2022). The impact of online reviews on the information flows and outcomes of marketing systems. Journal of Macromarketing, 42(1), 146-164. https://collected.jcu.edu/fac_bib_2022
Wu, H. H., Tipgomut, P., Chung, H. F., & Chu, W. K. (2020). The mechanism of positive emotions linking consumer review consistency to brand attitudes: A moderated mediation analysis. Asia Pacific Journal of Marketing and Logistics, 32(2), 575-588. https://doi.org/10.1108/APJML-03-2019-0224
Wu, M. Y. (2011). Comparing consumers' on-line shopping behaviors in Taiwan and the United States. China Media Research, 7(2), 81-91. http://www.chinamediaresearch.net/
Xie, K. L., Zhang, Z., & Zhang, Z. (2014). The business value of online consumer reviews and management response to hotel performance. International Journal of Hospitality Management, 43, 1-12. https://doi.org/10.1016/j.ijhm.2014.07.007
Yalcinkaya, B., & Just, D. R. (2023). Comparison of customer Reviews for Local and Chain Restaurants: Multilevel approach to Google Reviews data. Cornell Hospitality Quarterly, 64 (1), 63–73. https://journals.sagepub.com/doi/10.1177/19389655221102388
Yan, Q., Wu, S., Wang, L., Wu, P., Chen, H., & Wei, G. (2016). E-WOM from e-commerce websites and social media: Which will consumers adopt? Electronic Commerce Research and Applications, 17, 62-73. https://doi.org/10.1016/j.elerap.2016.03.004
Yeap, J. A., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250-258. https://doi.org/10.1016/j.chb.2013.10.034
Yılmaz, F., & Adalı, G. K. (2024). Metin Madenciliği Yaklaşımı ile E-Ticaret Sitesi Uygulamalarının Müşteri Yorumlarına Yönelik Duygu Analizi. Fenerbahçe Üniversitesi Sosyal Bilimler Dergisi, 4(2), 57-75. https://doi.org/10.58620/fbujoss.1558727
Zhang, Y., Wang, Z., Xiao, L., Wang, L., & Huang, P. (2023). Discovering the evolution of online reviews: A bibliometric review. Electronic Markets, 33(1), 49. https://doi.org/10.1007/s12525-023-00667-y
Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International journal of hospitality management, 76, 111-121. https://doi.org/10.1016/j.ijhm.2018.03.017
Zhou, Q., Xia, R., & Zhang, C. (2016). Online shopping behavior study based on multi-granularity opinion mining: China versus America. Cognitive Computation, 8(4), 587-602. https://doi.org/10.48550/arXiv.1603.08089
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 Üçüncü Sektör Sosyal Ekonomi Dergisi

Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.



