The Analysis of the Global Gender Gap in OECD Countries by Data Mining

Authors

DOI:

https://doi.org/10.63556/tisej.2025.1545

Keywords:

Gender Equality, Gender gap, Data mining, Cluster analysis, OECD countries

Abstract

The Global Gender Gap Index is a performance-based measure that assesses gender inequality across four key dimensions, independent of a country’s level of economic development. The Global Gender Gap Index, prepared by the World Economic Forum, evaluates countries according to sub-dimensions of economic participation and opportunity, educational attainment, health and survival, and political empowerment. The World Economic Forum reports on countries' success or failure in closing the gender gap, and country rankings are determined based on this report. This study employs cluster analysis, a widely used data mining technique, to examine the 2023 Global Gender Gap Index data for OECD countries. The analysis groups countries into three distinct clusters based on their similarities. Unlike previous studies, this research applies four different clustering algorithms and presents the results separately for each approach. Among these, the Canopy algorithm yielded the highest Silhouette score (0.3948), indicating superior clustering quality compared to the other methods. Consequently, the analysis and interpretations are based on the findings of the Canopy algorithm. The findings reveal that OECD countries can be classified into three distinct clusters, with women’s economic participation and political empowerment emerging as the primary determinants of cluster similarities and differences. These insights offer valuable contributions to researchers and policymakers, facilitating the development of more comprehensive and effective strategies to promote gender equality.

References

Ayabakan, B. Ç. (2022). OECD ülkelerinin küresel cinsiyet uçurumu endeksi verilerinin kümeleme analizi ile değerlendirilmesi, Uluslararası Sosyal Bilimlerde Yenilikçi Yaklaşımlar Dergisi, Cilt 6, (2), 40-58. https://doi.org/10.29329/ijiasos.2022.458.1.

Chen, D. H. (2004). Gender equality and economic development: The role for information and communication technologies. World Bank Policy Research Working Paper 3285. no. WPS 3285 Washington, DC: World Bank. http://documents.worldbank.org/curated/en/288621468778204692.

Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and data Engineering, 8(6), 866-883.

Delaney, R., Strough, J., Parker, A. M., & de Bruin, W. B. (2015). Variations in decision-making profiles by age and gender: A cluster-analytic approach. Personality and Individual Differences, 85, 19-24. https://doi.org/10.1016/j.paid.2015.04.034.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1-22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.

Erman, N., Korosec, A., & Suklan, J. (2015). Performance of selected agglomerative hierarchical clustering methods. Innovative Issues and Approaches in Social Sciences, 8, 180-204.

European Institute for Gender Equality (2024). Gender equility index, https://eige.europa.eu/gender-equality-index/2024, 24/02/2025.

Gençoğlu, P., & Kuşkaya, S. (2016). Küresel cinsiyet uçurumu (global gender gap) açısından Avrupa ve Orta Asya ülkelerinin değerlendirilmesi: istatistiksel bir analiz. Journal of International Social Research, 9(46), 696-705.

Gökçin, G.M. & Koçak, A. (2021). Türkiye’de toplumsal cinsiyetin veri madenciliği sınıflama modelleri ile analizi, International Journal of Disciplines Economics & Administrative Scienves Studies, 7 (31), 480-490. http://dx.doi.org/10.26728/ideas.434.

Gupta, A., Sharma, H., & Akhtar, A. (2021). A comparative analysis of k-means and hierarchical clustering. EPRA International Journal of Multidisciplinary Research (IJMR), 7(8), 412-418. https://doi.org/10.36713/epra8308.

Gür, Y. E., Eşidir, K. A., & Ayden, C. (2024). Türkiye'de E-Ticaretin Kullanılma Durumunun Makine Öğrenmesi İle Sınıflandırılması ve Çeşitli Değişkenlerle İlişkilerinin Analizi. Karadeniz Sosyal Bilimler Dergisi, 16(31), 582-610.

Hakim, D. K., Gernowo, R., & Nirwansyah, A. W. (2024). Flood prediction with time series data mining: Systematic review. Natural Hazards Research, 4(2), 194-220 https://doi.org/10.1016/j.nhres.2023.10.001.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17, 107-145. https://doi.org/10.1023/A:1012801612483.

Heinz, A., Catunda, C., van Duin, C., Torsheim, T., & Willems, H. (2020). Patterns of health-related gender inequalities—a cluster analysis of 45 countries. Journal of Adolescent Health, 66(6), S29-S39. https://doi.org/10.1016/j.jadohealth.2020.02.011.

Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). An effective and adaptable K-means algorithm for big data cluster analysis. Pattern Recognition, 139. https://doi.org/10.1016/j.patcog.2023.109404.

International Labour Organization. (2024). World Employment and Social Outlook: May 2024 Update. https://www.ilo.org/publications/flagship-reports/world-employment-and-social-outlook-may-2024-update. (Erişim Tarihi: 20.01.2025).

Jacquot, S. (2020). European Union gender equality policies since 1957. EHNE. Digital Encyclopedia of European History, 3(2), 31-38.

Karrar, A. E., Abdalrahman, M. A., & Ali, M. M. (2016). Applying k-means clustering algorithm to discover knowledge from ınsurance dataset using weka tool. The International Journal of Engineering and Science, 5(10), 35-39.

Khalfallah, J., & Slama, J. B. H. (2018). “A Comparative Study of the Various Clustering Algorithms in E-Learning Systems Using Weka Tools” 2018 JCCO Joint International Conference on ICT in Education and Training, International Conference on Computing in Arabic, and International Conference on Geocomputing (JCCO: TICET-ICCA-GECO), Tunisia / Hammamet, Tunisia. doi: 10.1109/ICCA-TICET.2018.8726188.

Koca, G. Ş. (2022). The classification of world countries in terms of global gender gap with using cluster analysis. In Women’s Studies International Forum (92). https://doi.org/10.1016/j.wsif.2022.102592.

Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of cluster in K-means clustering. International Journal, 1(6), 90-95.

McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. International Conference on Knowledge Discovery and Data mining. 169–178.

McIsaac, M. A., Reaume, M., Phillips, S. P., Michaelson, V., Steeves, V., Davison, C. M. & Pickett, W. (2021). A novel application of a data mining technique to study intersections in the social determinants of mental health among young Canadians. SSM-Population Health, (16). https://doi.org/10.1016/j.ssmph.2021.100946.

Mikanovic, V. B., Wenzel, H., & Laaser, U. (2022). Data mining approach: what determines the wellbeing of women in Montenegro, north Macedonia, and Serbia?, Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.873845.

Muthmaina, J. S. (2024). The femininomenon of inequality: a data-driven analysis and cluster profiling in Indonesia. Arxiv, https://doi.org/10.48550/arXiv.2412.00012.

Ogbuabor, G., & Ugwoke, F. N. (2018). Clustering algorithm for a healthcare dataset using silhouette score value, International Journal of Engineering and Computer Science, 10(2), 27-37. DOI:10.5121/ijcsit.2018.10203.

Olave, B. M. T. (2019). Underestimating the gender gap? An exploratory two-step cluster analysis of STEM labor segmentation and its impact on women. Journal of Women and Minorities in Science and Engineering, 25 (1). http://dx.doi.org/10.1615/JWomenMinorScienEng.2019021133.

Sadiku, M. N., Shadare, A. E., & Musa, S. M. (2015). Data mining: a brief introduction. European Scientific Journal, 11(21), 509-513.

Sutter, M., & Rützler, D. (2010). Gender differences in competition emerge early in life. Working Papers in Economics and Statistics. University of Innsbruck, Department of Public Finance, Innsbruck

Tokar, V., Tyshchenko, D., Franchuk, T., Makoıedova, V., & Lotarıev, A. (2023). Usıng cluster analysıs for revealıng gender equalıty patterns ın eu ıct educatıon and employment. Journal Of Theoretical And Applied Information Technology, 101(16), 6691-6702.

United Nations Development Programme. (2024). Gender Inequality Index, https://www.undp.org/sites/g/files/zskgke326/files/migration/tr/UNDP-TR-EN-HDR-2019-FAQS-GII.pdf. (Erişim Tarihi: 25.02.2025).

United Nations Development Programme (2024). Gender Development Index, https://hdr.undp.org/gender-development-index#/indicies/GDI, (Erişim Tarihi: 24.02.2025).

Vinska, O., & Tokar, V. (2021). Cluster analysis of the European Union gender equality and economic development. Business, Management and Economics Engineering, 19(2), 373-388. https://doi.org/10.3846/bmee.2021.15382.

World Bank. (2012). World Development Report 2012: Gender Equality and Development. Washington, DC: World Bank.

World Economic Forum. (2023). Global Gender Gap Report, https://www3.weforum.org/docs/WEF_GGGR_2024.pdf. (Erişim Tarihi: 10.10.2025).

Published

22.09.2025

How to Cite

SABANCILAR EREN, S. (2025). The Analysis of the Global Gender Gap in OECD Countries by Data Mining. Third Sector Social Economic Review, 60(3), 3130–3147. https://doi.org/10.63556/tisej.2025.1545

Issue

Section

Research Article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.