Finansal Analizde Yapay Zekânın Etkinliği: İstanbul Menkul Kıymetler Borsası 100 (İMKB 100) Üzerine Kanıtlar

Yazarlar

DOI:

https://doi.org/10.63556/tisej.2025.1652

Anahtar Kelimeler:

Yapay Zekâ- Derin Öğrenme Mimarisi (LTSM)- Makroekeonomik Göstergeler ve BIST 100- Finansal Öngörü- Logit-Probit

Özet

Bu çalışmanın amacı, yapay zekâ alanında bir teknoloji olan yapay sinir ağlarına dayalı derin öğrenme tekniklerini kullanarak makroekonomik göstergelerin Borsa İstanbul (BIST 100) endeksi üzerindeki etkilerini analiz etmektir. BIST 100 endeksini tahmin etmek için yedi makroekonomik göstergenin (Para Arzı (M2), Üretici Fiyat Endeksi (ÜFE), Sanayi Üretim Endeksi (SÜE), Döviz Kuru (USD/TL), Tahvil Faiz Oranları, Brent Petrol Fiyatları ve Altın Fiyatları) Ocak 2001-Ocak 2022 dönemindeki aylık kapanış fiyatları kullanılmıştır. BIST 100 endeksi, Uzun Kısa-Dönem Hafıza (LSTM) dahil olmak üzere hem derin öğrenme modelleri hem de Logit ve Probit modelleri çerçevesinde tahmin edilmiş ve bu yöntemlerin tahmin performansları karşılaştırılmıştır. Analiz sonuçları, seçilen makroekonomik değişkenlerin, BIST 100endeksi üzerindeki etkilerinin COVID-19 pandemisi ve 2008 küresel finansal krizi de dahil olmak üzere kriz dönemlerinde yoğunlaştığını ortaya koymaktadır. Ayrıca, reel sektördeki değişimlerin sermaye sektörü üzerinde önemli bir etkiye sahip olduğu ve derin öğrenme modelinin finansal krizleri öngörmede daha başarılı olduğu görülmüştür. Analiz sonuçları, makroekonomik göstergelerin BIST 100 endeksi üzerindeki etkilerini analiz etmek için geliştirilen LSTM derin öğrenme mimarilerinin çok düşük hata seviyesine sahip olduğunu ve Logit-Probit regresyon modellerine göre daha etkin ve tatmin edici sonuçlar verdiğini göstermektedir. Bu sonuçlar gelişmekte olan piyasalara ve politika yapıcılara yol gösterici bilgiler sunmaktadır.

Kaynaklar

Abraham, B., & Malik, H. J. (1973). Multivariate Logistic Distributions. CRC Press., 1(3), 588–590. https://doi.org/10.1214/aos/1176342430.

Adayeri, Enhancing financial analysis through artificial intelligence: A comprehensive review. Journal of Science & Technology, 5(2), 102–117. https://doi.org/10.55662/JST.2024.5206 .

Aggarwal, M. (2020). Probit and Nested Logit Models Based on Fuzzy Measure. Iranıan Journal of Fuzzy Systems, 17(2), 169–181.

Akel, V., & Karacameydan, F. (2012). Yatırım Fonları Net Varlık Değerlerinin Yapay Sinir Ağları Yöntemi ile Tahmin Edilmesi. Anadolu University Journal of Social Sciences, 12(2), 87–106.

Akkaya, M., & Kantar, L. (2019). Bankacılık Kırılganlık Endeksinin Logit-Probit Model İle Analizi: Türkiye Uygulaması. Finans Politik& Ekonomik Yorumlar, 56(650), 131–145.

Aladag, C. H., Egrioglu, E., & Kadilar, C. (2009). Forecasting Nonlinear Time Series with a Hybrid Methodology. Applied Mathematics Letters, 22(9), 1467–1470.

Alaloul, W. S., & Qureshi, A. H. (2020). Data Processing Using Artificial Neural Networks. In Data Processing Using Artificial Neural Networks. IntechOpen.

Altan, Ş. (2008). Döviz Kuru Öngörü Performansı için Alternatif Bir Yaklaşım: Yapay Sinir Ağı. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(2), Article 2.

Altay, E., & Satman, M. H. (2005). Stock market forecasting: Artificial neural network and linear regression comparison in an emerging market. Journal of Financial Management & Analysis, 18(2), 18.

Anderson, D., & McNeill, G. (1992). Artificial Neural Networks Technology. Kaman Science Corporation,

Avci, E. (2007). Forecasting Daily and Sessional Returns of the ISE-100 Index with Neural Network Models. Doğuş Üniversitesi Dergisi, 8(2), Article 2

Avci, E. (2015). Stock Return Forecasts with Artificial Neural Network Models. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 26(1), Article 1.

Barro, R. J. (1990). The Stock Market and Investment. Review of Financial Studies, 3(1), 115–131.

Bengio, Y., Goodfellow, I., & Courville, A. (2015). Deep Learning: Methods and Applications. MIT Press.

Benli, Y. K. (2005). Bankalarda Mali Başarısızlığın Öngörülmesi Lojistik Regresyon Ve Yapay Sinir Ağı Karşılaştırması. Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi, 16, 31–46.

Bollen, N. P. B., & Busse, J. A. (2001). On the Timing Ability of Mutual Fund Managers. The Journal of Finance, 56(3), 1075–1094.

Borsa İstanbul A.Ş. (n.d.). Retrieved 30 July 2022, from https://www.borsaistanbul.com /tr/sayfa/471/borsa-istanbul-hakkinda.

Boyer, B., & Zheng, L. (2009). Investor flows and stock market returns. Journal of Empirical Finance, 16(1), 87–100. https://doi.org/10.1016/j.jempfin.2008.06.003

Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton University Press. https://www.amazon.com/Econometrics-Financial-Markets-John-Campbell/dp/0691043019

Cao, J., & Wang, J. (2020). Exploration of Stock index Change Prediction Model Based on The Combination of Principal Component Analysis and Artificial Neural Network. Soft Computing, 24(11), 7851–7860.

Chakravarty, S. (2005). Stock Market and Macro Economic Behavior in India. Institute of Economic Growth [Cited 20 May 2011]., 15.

Chen, A.-S., Leung, M. T., & Daouk, H. (2003). Application of Neural Networks to an Emerging Financial Market: Forecasting and Trading The Taiwan Stock Index. Computers & Operations Research, 30(6), 901–923.

Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic Forces and the Stock Market. The Journal of Business, 59(3), 383–403.

Chen, W., Zhang, Y., Yeo, C. K., Lau, C. T., & Lee, B. S. (2017). Stock market prediction using neural network through news on online social networks. 2017 International Smart Cities Conference (ISC2), 1–6.

Cheng, D., Yang, F., Xiang, S., & Liu, J. (2022a). Financial Time Series Forecasting with Multi-Modality Graph Neural Network. Pattern Recognition, 121, 108218.

Cheng, D., Yang, F., Xiang, S., & Liu, J. (2022b). Financial time series forecasting with multi-modality graph neural network. Pattern Recognition, 121, 108218.

Chong, E., Han, C., & Park, F. C. (2017a). Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data Representations, and Case Studies. Expert Systems with Applications, 83, 187–205.

Chong, E., Han, C., & Park, F. C. (2017b). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.

Cheng, J., Tiwari, S., Khaled, D., Mahendru, M., & Shahzad, U. (2024). Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. Technological Forecasting and Social Change, 198, 122938. https://doi.org/10.1016/j.techfore.2023.122938.

Çil, N. (2018). Finansal Ekonometri. Der Yayınları.

Coşkun, M., Ki̇raci, K., & Muhammed, U. (2016). Seçilmiş Makroekonomik Değişkenlerle Hisse Senedi Fiyatları Arasındaki İlişki: Türkiye Üzerine Ampirik Bir İnceleme. Finans Politik ve Ekonomik Yorumlar, 616, Article 616.

Cowles, A. (1933). Can Stock Market Forecasters Forecast? Econometrica, 1(3), 309–324.

Dase, R. K., & Pawar, D. D. (2010). Application of Artificial Neural Network for Stock Market Predictions: A Review of Literature. International Journal of Machine Intelligence, 2(2), 14–17.

Davis, E. P., & Karim, D. (2008). Comparing Early Warning Systems for Banking Crises. Journal of Financial Stability, 4(2), 89–120.

Deep Learning Toolbox. (n.d.). Retrieved 28 August 2022, from https://www.mathworks.com/products/deep-learning.html.

Diler, A. I. (2003). Forecasting the Direction of the ISE National-100 Index by Neural Networks Backpropagation Algorithm. Istanbul Stock Exchange Review, 7(25–26), 65–82.

Donaldson, R. G., & Kamstra, M. (1999). Neural Network Forecast Combining with Interaction Effects. Journal of the Franklin Institute, 336(2), 227–236.

Dutta, G., Jha, P., Laha, A. K., & Mohan, N. (2006). Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange. Journal of Emerging Market Finance, 5(3), 283–295.

Eğilmez, M. (2009). Küresel Finans Krizi Piyasa Sisteminin Eleştirisi. Remzi Kitabevi. https://www.nadirkitap.com/kuresel-finans-krizi-piyasa-sisteminin-elestirisi-mahfi-egilmez-kitap14581620.html

Eğrioğlu, E., Yolcu, U., & Baş, E. (2019). Yapay Sinir Ağları (1st ed.). Nobel Yayıncılık

Enke, D., Grauer, M., & Mehdiyev, N. (2011). Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks. Procedia Computer Science, 6, 201–206. https://doi.org/10.1016/j.procs.2011.08.038

Enke, D., & Mehdiyev, N. (2013). Stock Market Prediction Using a Combination of Stepwise Regression Analysis, Differential Evolution-based Fuzzy Clustering, and a Fuzzy Inference Neural Network. Intelligent Automation & Soft Computing, 19(4), 636–648.

Fama, E. F. (1990). Stock Returns, Expected Returns, and Real Activity. The Journal of Finance, 45(4), 1089–1108.

Fama, E. F., & French, K. R. (1996). Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance, 51(1), 55–84.

Fathi, E., & Maleki Shoja, B. (2018a). Deep Neural Networks for Natural Language Processing. In Handbook of Statistics (Vol. 38, pp. 229–316). Elsevier.

Fathi, E., & Maleki Shoja, B. (2018b). Chapter 9—Deep Neural Networks for Natural Language Processing. In V. N. Gudivada & C. R. Rao (Eds.), Handbook of Statistics (Vol. 38, pp. 229–316). Elsevier.

Frankel, J. A., & Rose, A. K. (1996). Currency Crashes in Emerging Markets: An empirical Treatment. Journal of International Economics, 41(3), 351–366.

Gomes, L. F. A. M., Machado, M. A. S., Caldeira, A. M., Santos, D. J., & Nascimento, W. J. D. do. (2016). Time Series Forecasting with Neural Networks and Choquet Integral. Procedia Computer Science, 91, 1119–1129.

Gonenc, H., & Karan, M. B. (2003). Do Value Stocks Earn Higher Returns than Growth Stocks in an Emerging Market? Evidence from the Istanbul Stock Exchange. Journal of International Financial Management and Accounting, 14(1), 1–25.

Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D. (2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577.

Gujarati, D. N. (2011). Econometrics by Example. Palgrave Macmillan.

Gujarati, D. N., & Porter, D. C. (2009). Basic eEconometrics (5th ed). McGraw-Hill Irwin.

Güloğlu, B., & Altunoğlu, E. (2011). Finansal Serbestleşme Politikaları Ve Finansal Krizler: Latin Amerika, Meksika, Asya ve Türkiye Krizleri. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 27, Article 27.

Gürsoy, A. (2019). Makroekonomik Değişkenlerin Hisse Senedi Getirilerine Etkisi: Bankacılık Sektörü Örneği. Ekonomi ve Finansal Araştırmalar Dergisi, 1(1–2), Article 1–2.

Haykin, S. S. (1999). Neural Networks: A comprehensive Foundation (2. ed., [Nachdr.], internat. ed). Prentice Hall.

Hebb, D. O. (n.d.). The Organization of Behavior. In Chapter 4. “The First Stage of Perception: Growth of the Assembly”.

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature Review: Machine Learning Techniques Applied to Financial Market Prediction. Expert Systems with Applications, 124, 226–251.

Hsieh, C. (1993). Some Potential Applications of Artificial Neural Systems in Financial Management. Journal of Systems Management, 44(4), 12.

Hsieh, J., Chen, T.-C., & Lin, S.-C. (2019). Credit constraints and growth gains from governance. Applied Economics, 51(11), 1199–1211.

Hu, M. Y., & Tsoukalas, C. (1999). Combining Conditional Volatility Forecasts Using Neural Networks: An Application to The Ems Exchange Rates. Journal of International Financial Markets, Institutions and Money, 9(4), 407–422.

Hull, J. (2007). Risk Management and Financial Institutions. Pearson Prentice Hall. https://books.google.com.tr/books?id=G4nCQgAACAAJ

Ilahi, I., Ali, M., & Jamil, R. (2015). Impact of Macroeconomic Variables on Stock Market Returns: A Case of Karachi Stock Exchange. SSRN Electronic Journal.

Jing, N., Wu, Z., & Wang, H. (2021). A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction. Expert Systems with Applications, 178, 115019.

Kaastra, I., & Boyd, M. (1996). Designing a Neural Network for Forecasting Financial and Economic Time Series. Neurocomputing, 10(3), 215–236.

Kaminsky, G. L., & Reinhart, C. M. (1999). The Twin Crises: The Causes of Banking and Balance-of-Payments Problems. American Economic Review, 89(3), 473–500.

Kamruzzaman, J., Begg, R. K., & Sarker, R. A. (2006a). Artificial Neural Networks in Finance and Manufacturing. Idea Group Publishing.

Kamruzzaman, J., Begg, R. K., & Sarker, R. A. (2006b). Artificial Neural Networks in Finance and Manufacturing. Idea Group Publishing.

Kantar, L., & Akkaya, M. (2018). Finansal Krizlerin Tahmininde Öncü Göstergelerin Logit-Probit Model ile Analizi: Türkiye Uygulaması. International Journal of Management Economics and Business, 14(3), 575–590.

Kara, Y., Acar Boyacioglu, M., & Baykan, Ö. K. (2011). Predicting Direction of Stock Price Index Movement Using Artificial Neural Networks and Support Vector Machines: The Sample of The Istanbul Stock Exchange. Expert Systems with Applications, 38(5), 5311–5319.

Karaçor, Z., & Alpteki̇n, V. (2006). Finansal Krizlerin Önceden Tahmin Yoluyla Değerlendirilmesi: Türkiye Örneği. Yönetim ve Ekonomi Dergisi, 13(2), Article 2.

Karan, M. B. (2013). Yatırım Analizi ve Portföy Yönetimi (4th ed.). Gazi Kitapevi.

Kaya, V., & Yilmaz, O. (2007). Para Krizleri Öngörüsünde Logit Model ve Sinyal Yaklaşımının Değeri: Türkiye Tecrübesi (Working Paper No. 2007/1). Discussion Paper.

Kaymaz, V., & Yilmaz, Ö. (2022). Impact of Macro Indicators on Istanbul Stock Exchange During Covid-19 Pandemic. İzmir İktisat Dergisi, 37(1), Article 1.

Kennedy, P. (1998). A Guide to Econometrics (Fourth Edition). MIT Press.

Kim, K. (2003). Financial Time Series Forecasting Using Support Vector Machines. Neurocomputing, 55(1), 307–319.

Kim, T. Y., Oh, K. J., Sohn, I., & Hwang, C. (2004). Usefulness of Artificial Neural Networks for Early Warning System of Economic Crisisrisis. Expert Systems with Applications, 26(4), 583–590.

Kocabiyik, T., & Fattah, A. (2020). Makroekonomik Değişkenlerin Borsa Endeksleri Üzerine Etkisi: Türkiye ve ABD Karşılaştırması. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 116–151.

Kohonen, T. (2001). Self-Organizing Maps. Springer Science & Business Media.

Kovacova, M., & Kliestik, T. (2017). Logit and Probit Application for The Prediction of Bankruptcy in Slovak Companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775–791.

Kubat, C. (2019). MATLAB Yapay Zeka ve Mühendislik Uygulamaları (4.). Abaküs.

Kutsurelis, J. E. (1998). Forecasting Financial Markets Using Neural Networks: An Analysis of Methods and Accuracy [Master’s Thesis]. Naval Postgraduate School.

Liang, X., Zhang, H., Xiao, J., & Chen, Y. (2009). Improving Option Price Forecasts with Neural Networks and Support Vector Regressions. Neurocomputing, 72(13–15), 3055–3065.

Lin, C.-C., Chen, C.-S., & Chen, A.-P. (2018). Using intelligent computing and data stream mining for behavioral finance associated with market profile and financial physics. Applied Soft Computing, 68, 756–764.

Lin, C.-S., Khan, H. A., Chang, R.-Y., & Wang, Y.-C. (2008). A New Approach to Modeling Early Warning Systems for Currency Crises: Can a Machine-Learning Fuzzy Expert System Predict the Currency Crises Effectively? Journal of International Money and Finance, 27(7), 1098–1121.

Lin, C., Chang, M., & Sun, Y. (2024). Assessing the Efficacy of Artificial Intelligence in Mitigating Stock Market Volatility Induced by Emotional Decision-Making. 2024 4th International Conference on Computer Communication and Artificial Intelligence (CCAI), null, 320–331. https://doi.org/10.1109/CCAI61966.2024.10603355.

Lintner, J. (1965). Security Prices, Risk, and Maximal Gains from Diversification. The Journal of Finance, 20(4), 587–615.

Liu, M., & Shrestha, K. M. (2008). Analysis of the long‐term relationship between macro‐economic variables and the Chinese stock market using heteroscedastic cointegration. Managerial Finance, 34(11), 744–755.

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91.

McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

McNelis, P. D. (2005). Neural Networks in Finance Gaining: Predictive Edge in the Market. Elsevier Academic Press.

Metlek, S., & Çetiner, H. (2021). MATLAB Ortamında Derin Öğrenme Uygulamaları (1st ed.). İksad Yayınevi.

Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34(4), 768–783.

Mukherjee, T. K., & Naka, A. (1995). Dynamic Relations Between Macroeconomic Variables and The Japanese Stock Market: An Application of a Vector Error Correction Model. Journal of Financial Research, 18(2), 223–237.

Nunes, M., Gerding, E., McGroarty, F., & Niranjan, M. (2019). A Comparison of Multitask and Single Task Learning with Artificial Neural Networks for Yield Curve Forecasting. Expert Systems with Applications, 119, 362–375.

Öğüt, H., Mete Doğanay, M., & Aktaş, R. (2009). Detecting stock-price manipulation in an emerging market: The case of Turkey. Expert Systems with Applications, 36(9), 11944–11949.

Öztemel, E. (2006). Yapay Sinir Ağları (2. Basım). Papatya Yayıncılık.

Öztemel, E. (2012). Yapay Sinir Ağları (3. Basım). Papatya Yayıncılık.

Oyewole, A. T., Adeoye, O. B., Addy, W. A., Okoye, C. C., Ofodile, O. C., Ugochukwu, C. E., Ugochukwu, C. E. (2024). Promoting sustainability in finance with AI: A review of current practices and future potential. World Journal of Advanced Research and Reviews, 21(3), 590–607. https://doi.org/10.30574/wjarr.2024.21.3.0691.

Panda, C., & Narasimhan, V. (2007). Forecasting Exchange Rate Better with Artificial Neural Network. Journal of Policy Modeling, 29(2), 227–236.

Patil, P. R., Parasar, D., & Charhate, S. (2021). A Literature Review on Machine Learning Techniques and Strategies Applied to Stock Market Price Prediction. Springer.

Paul D. McNelis. (2005). Neural Networks in Finance: Gaining Predictive Edge in the Market. Academic Press; eBook Subscription Super Collection - Turkey (EBSCOhost).

Peng, Y., Albuquerque, P. H. M., Kimura, H., & Saavedra, C. A. P. B. (2021). Feature Selection and Deep Neural Networks for Stock Price Direction Forecasting Using Technical Analysis Indicators. Machine Learning with Applications, 5, 100060.

Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.

Quazi, S. (2022). Artificial Intelligence and Machine Learning in Precision and Genomic Medicine. Medical Oncology, 39(8), 120.

Roll, R., & Ross, S. A. (1980). An Empirical Investigation of the Arbitrage Pricing Theory. The Journal of Finance, 35(5), 1073–1103.

Rousseau, P. L., & Sylla, R. (2003). Financial Systems, Economic Growth, and Globalization. In Globalization in Historical Perspective (pp. 373–416). University of Chicago Press.

Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. Sn Computer Science, 2(6), 420.

Sayilgan, G., & Süslü, C. (2011). Makroekonomik Faktörlerin Hisse Senedi Getirilerine Etkisi: Türkiye Ve Gelişmekte Olan Piyasalar Üzerine Bir İnceleme. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 5(1), Article 1.

Sayılgan, G. (2011). Soru ve Yanıtlarıyla İşletme Finansmanı (5.). Turhan Kitapevi.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85–117.

Schwert, G. W. (1990). Stock Returns and Real Activity: A Century of Evidence. The Journal of Finance, 45(4), 1237–1257.

Sevüktekin, M., & Nargeleçekenler, M. (2010). Ekonometik Zaman Serileri Analizi (3.). Nobel Yayıncılık.

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(3), 425–442.

Smith, K. A., & Gupta, J. N. D. (2000). Neural Networks in Business: Techniques and Applications for The Operations Researcher. Computers & Operations Research, 27(11–12), 1023–1044.

Staub, S., Karaman, E., Kaya, S., Karapınar, H., & Güven, E. (2015). Artificial Neural Network and Agility. Procedia - Social and Behavioral Sciences, 195, 1477–1485.

Sutskever, I., Martens, J., & Dahl, G. (n.d.). On The Importance of Initialization and Momentum in Deep Learning. 9.

Treynor, J. L. (1965). How to Rate Management of Investment Funds. Harvard Business Review: HBR, 43(1), 63–75.

Tsai, C. F., & Wang, S. P. (2009). Stock Price Forecasting by Hybrid Machine Learning Techniques. Proceedings of the International Multiconference of Engineers and Computer Scientists, 1(755), 60.

Tseng, C.-H., Cheng, S.-T., Wang, Y.-H., & Peng, J.-T. (2008). Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices. Physica A: Statistical Mechanics and Its Applications, 387(13), 3192–3200.

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 49, 433–460.

Uğurlu, M., & Aksoy, H. (2006). Prediction of corporate financial distress in an emerging market: The case of Turkey. Cross Cultural Management: An International Journal, 13(4), 277–295.

Vadlamudi, S. (2017). Stock Market Prediction using Machine Learning: A Systematic Literature Review. American Journal of Trade and Policy, 4(3), 123–128.

Vui, C. S., Soon, G. K., On, C. K., Alfred, R., & Anthony, P. (2013). A review of stock market prediction with Artificial neural network (ANN). 2013 IEEE International Conference on Control System, Computing and Engineering, 477–482.

Wang, L., Wang, Z., Qu, H., & Liu, S. (2018). Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Applied Soft Computing, 66, 1–17.

Wongbangpo, P., & Sharma, S. C. (2002). Stock Market and Macroeconomic Fundamental Dynamic Interactions: ASEAN-5 Countries. Journal of Asian Economics, 13(1), 27–51.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (The second edition). The MIT Press.

Wu, S.-I., & Lu, R.-P. (1993). Combining Artificial Neural Networks and Statistics for Stock-Market Forecasting. Proceedings of the 1993 ACM Conference on Computer Science - CSC ’93, 257–264.

Yao, J., Poh, H., & Jasic, T. (1996). Foreign Exchange Rates Forecasting with Neural Networks. 754–759.

Yazici, A. C., Öǧüş, E., Ankarali, S., Canan, S., Ankaralı, H., & Akkuş, Z. (2007). Artificial Nneural Networks: Review. Turkiye Klinikleri Journal of Medical Sciences, 27, 65–71.

Yildiz, B. (2001). Prediction of Financial Failure with Artificial Neural Network Technology and an Empirical Application on Publicly Held Companies. Istanbul Stock Exchange Review, 5(17), 47–62.

Yolcu, U., Egrioglu, E., & Aladag, C. H. (2013). A New Linear & Nonlinear Artificial Neural Network Model for Time Series Forecasting. Decision Support Systems, 54(3), 1340–1347.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning Gaussian Processes from Multiple Tasks. Proceedings of the 22nd International Conference on Machine Learning - ICML ’05, 1012–1019.

Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with Artificial Neural Networks: The state of the Art. International Journal of Forecasting, 14(1), 35–62.

Zhang, G. P. (2001). An Investigation of Neural Networks for Linear Time-Series Forecasting. Computers & Operations Research, 28(12), 1183–1202.

Zhang, G. P. (2003). Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, 159–175.

Zhang, G. P. (2004a). Business Forecasting with Artificial Neural Networks: An Overview. Neural Networks in Business Forecasting.

Zhang, G. P. (2004b). Neural Networks in Business Forecasting. Idea Group Inc (IGI).

Zurada, J. M. (1992). Introduction to Artificial Neural Systems. West.

Yayınlanmış

20-12-2025

Nasıl Atıf Yapılır

ÜSTÜNER, F., & ÇANKAL, E. (2025). Finansal Analizde Yapay Zekânın Etkinliği: İstanbul Menkul Kıymetler Borsası 100 (İMKB 100) Üzerine Kanıtlar. Üçüncü Sektör Sosyal Ekonomi Dergisi, 60(4), 3792–3825. https://doi.org/10.63556/tisej.2025.1652

Sayı

Bölüm

Araştırma Makalesi

Benzer Makaleler

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Bu makale için ayrıca gelişmiş bir benzerlik araması başlat yapabilirsiniz.