A Case Study on Long-Term Water Consumption Forecasting in Türkiye By Using The Hodrick–Prescott Filter and Artificial Neural Networks
DOI:
https://doi.org/10.63556/tisej.2025.1693Keywords:
Water Consumption Forecasting, Hodrick–Prescott Filtering, Artificial Neural Networks, Multiple Linear Regression, TürkiyeAbstract
Consumption planning for scarce resources is one of the most critical activities for meeting the unlimited needs and demands of humankind. In this context, the management of existing water resources and their efficient use play a vital role in achieving countries’ sustainable development goals. However, water resources are becoming increasingly fragile due to their limited and uneven distribution, anthropogenic pollution, and the impacts of climate change, which makes effective water management necessary. Accurate short and long-term water demand forecasting is essential to ensure reliable and cost-efficient operation of water distribution systems. This study aims to forecast Türkiye’s long-term water consumption by analyzing the factors influencing water use between 2001 and 2021 using the Hodrick–Prescott (HP) filtering method and Artificial Neural Networks (ANNs). The objective is to generate water consumption forecasts for the years 2030 and 2050. In this context, HP filtering is first employed to remove short-term fluctuations and extract the trend and cyclical components of the data. These components are then modeled by using ANN and Multiple Linear Regression (MLR) methods. According to the findings, while no significant increase in water consumption is projected for 2030, a substantial rise is expected by 2050. The 2030 forecasts indicate that policy interventions targeting water consumption, aligned with the Sustainable Development Goals, will be effective. Overall, the results suggest the need to develop new water resources, enhance wastewater recycling, and strengthen water management policies to balance future water demand with supply.
References
Adamowski, J. F. (2008). Peak daily water demand forecast modeling using artificial neural networks. Journal of Water Resources Planning and Management, 134(2), 119-128.
Adamowski, J., & Karapataki, C. (2010). Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering, 15(10), 729-743.
Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga‐Zielinski, B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research, 48(1).
Akçakaya, A., Sümer, U. M., Demircan, M., Demir, Ö., Atay, H., Eskioğlu, O., … Çukurçayır, F. (2015). Yeni senaryolar ile Türkiye iklim projeksiyonları ve iklim değişikliği. Ankara: Meteoroloji Genel Müdürlüğü Matbaası.
Aküzüm, T., Çakmak, B., & Gökalp, Z. (2010). Türkiye’de su kaynakları yönetiminin değerlendirilmesi. Tarım Bilimleri Araştırma Dergisi, (1), 67-74.
Altunkaynak, A., Özger, M., & Çakmakci, M. (2005). Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resources Management, 19, 641-654.
Anele, A. O., Hamam, Y., Abu-Mahfouz, A. M., & Todini, E. (2017). Overview, comparative assessment and recommendations of forecasting models for short-term water demand prediction. Water, 9(11), 887.
Bakhshipour, A. E., Namdari, H., Koochali, A., Dittmer, U., & Haghighi, A. (2024). An ensemble data-driven approach for enhanced short-term water demand forecasting in urban areas. Engineering Proceedings, 69 (1).
Bakker, M., Van Duist, H., Van Schagen, K., Vreeburg, J., & Rietveld, L. (2014). Improving the performance of water demand forecasting models by using weather input. Procedia Engineering, 70, 93-102.
Benítez, R., Ortiz-Caraballo, C., Preciado, J. C., Conejero, J. M., Sánchez Figueroa, F., & Rubio-Largo, A. (2019). A short-term data based water consumption prediction approach. Energies, 12(12), 2359.
Boudhaouia, A., & Wira, P. (2021). A real-time data analysis platform for short-term water consumption forecasting with machine learning. Forecasting, 3(4), 682-694.
Candelieri, A., Soldi, D., & Archetti, F. (2015). Short-term forecasting of hourly water consumption by using automatic metering readers data. Procedia Engineering, 119, 844-853.
Cendere, A. (1998). Su elemanlarının kentsel mekânlarda ve yeşil alanlarda kullanımı (Yayımlanmamış yüksek lisans tezi). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
Devianto, D., Maiyatri, M., Afrimayani, A., Ramadani, K., Juwita, D., Almuayar, M., & Bahari, A. (2025). The long short-term memory model as the neural networks approach in modeling water supply structural production. Communications in Mathematical Biology and Neuroscience, 2025(39).
Duerr, I., Merrill, H. R., Wang, C., Bai, R., Boyer, M., Dukes, M. D., & Bliznyuk, N. (2018). Forecasting urban household water demand with statistical and machine learning methods using large space-time data: A Comparative study. Environmental Modelling & Software, 102, 29-38.
Düzenli, T., Alpak, E. M., & Akyol, D. (2019). Peyzaj mimarlığında su öğesinin tarihsel süreçteki kullanım amaçları. Sanat ve Tasarım Dergisi, 9(1), 20-35.
Estrada, A. V., Henning, E., Kalbusch, A., & Walter, O. M. F. C. (2025). Urban water demand forecasting via artificial neural network models: A case study in Southern Brazil. Discover Sustainability, 6, 1105.
Eşkinat, R. (2016). Binyıl kalkınma hedeflerinden sürdürülebilir kalkınma hedeflerine. Anadolu Üniversitesi Hukuk Fakültesi Dergisi, 2(3), 267-282.
Fırat, M., Yurdusev, M. A., & Turan, M. E. (2009). Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resources Management, 23, 617-632.
Gagliardi, F., Alvisi, S., Kapelan, Z., & Franchini, M. (2017). A probabilistic short-term water demand forecasting model based on the Markov Chain. Water, 9(7), 507.
García-Soto, C. G., Torres, J. F., Zamora-Izquierdo, M. A., Palma, J., & Troncoso, A. (2024). Water consumption time series forecasting in urban centers using deep neural networks. Applied Water Science, 14, 21.
Ghalehkhondabi, I., Ardjmand, E., Young, W. A., & Weckman, G. R. (2017). Water demand forecasting: review of soft computing methods. Environmental Monitoring and Assessment, 189, 1-13.
Gharabaghi, S., Stahl, E., & Bonakdari, H. (2019). Integrated nonlinear daily water demand forecast model (case study: City of Guelph, Canada). Journal of Hydrology, 579, 124182.
Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). New York, NY: McGraw-Hill.
Güler, İ. (2021). Gençler ve yeni projelerle geleceğe hazırlanıyoruz. TİMREPORT, 194, 4–5.
Gülgün, B., Keskin, N., & Ankaya, F. Ü. (2011). Tarih Boyunca Bahçelerde Su Öğesinin Kullanımı. Ziraat Mühendisliği, 357, 18-23.
Hakyemez, C. (2019). Su: Yeni Elmas (TSKB Ekonomik Araştırmalar Tematik Bakış). İstanbul: TSKB.
Hao, W., Cominola, A., & Castelletti, A. (2022). Comparing predictive machine learning models for short-and long-term urban water demand forecasting in Milan, Italy. IFAC-PapersOnLine, 55(33), 92-98.
Harvey, A. C., & Jaeger, A. (1993). Detrending, stylized facts and the business cycle. Journal of applied econometrics, 8(3), 231-247.
Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150.
Hodrick, R. J., & Prescott, E. C. (1997). Postwar US business cycles: an empirical investigation. Journal of Money, Credit, and Banking, 1-16.
Huang, L., Zhang, C., Peng, Y., & Zhou, H. (2014). Application of a combination model based on wavelet transform and KPLS-ARMA for urban annual water demand forecasting. Journal of Water Resources Planning and Management, 140(8), 04014013.
Jain, A., Kumar Varshney, A., & Chandra Joshi, U. (2001). Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resources Management, 15, 299-321.
Jain, A., & Ormsbee, L. E. (2002). Short‐term water demand forecast modeling techniques—Conventıonal methods versus AI. Journal‐American Water Works Association, 94(7), 64-72.
Kabalcı, E. (2014). Yapay Sinir Ağları. Ders Notları https://ekblc.files.wordpress.com/2013/09/ysa.pdf
Karakaya, E. (2016). Paris iklim anlaşması: içeriği ve Türkiye üzerine bir değerlendirme. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 3(1), 1-12.
Karamaziotis, P. I., Raptis, A., Nikolopoulos, K., Litsiou, K., & Assimakopoulos, V. (2020). An empirical investigation of water consumption forecasting methods. International Journal of Forecasting, 36(2), 588-606.
Kurnaz, L. (2014). Drought in Turkey. İstanbul Policy Center, Sabancı Üniversitesi, İstanbul.
Li, W., & Huicheng, Z. (2010). Urban water demand forecasting based on HP filter and fuzzy neural network. Journal of Hydroinformatics, 12(2), 172-184.
Liu, J., Savenije, H. H., & Xu, J. (2003). Forecast of water demand in Weinan City in China using WDF-ANN model. Physics and Chemistry of the Earth, Parts A/B/C, 28(4-5), 219-224.
Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101-124.
Martínez, A., Pérez-García, R., & Mora-Méndez, J. (2024). Predicting water distribution: Heterogeneous data modelling in large water networks. Sustainable Cities and Society, 103.
Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2008). Water demand prediction using artificial neural networks and support vector regression. Journal of Computers, 3(11), 1-8.
Muhammad, A. U., Li, X., & Feng, J. (2019). Artificial intelligence approaches for urban water demand forecasting: a review. In Machine Learning and Intelligent Communications: 4th International Conference, MLICOM 2019, Nanjing, China, August 24–25, 2019, Proceedings 4, 595-622. Springer International Publishing.
Nasseri, M., Moeini, A., & Tabesh, M. (2011). Forecasting monthly urban water demand using extended Kalman filter and genetic programming. Expert Systems with Applications, 38(6), 7387-7395.
Ndehedehe, C. E., Ferreira, V., & Elmahdy, S. I. (2023). Assessing water availability using machine learning and remote sensing datasets: A case study in Africa. Journal of Hydrology: Regional Studies, 45.
Öztemel, E. (2003). Yapay sinir ağları. Papatya Yayıncılık, İstanbul.
Öztürk, K., & Şahin, M. E. (2018). Yapay sinir ağları ve yapay zekaya genel bir bakış. Takvim-i Vekayi, 6(2), 25-36.
Pacchin, E., Alvisi, S., & Franchini, M. (2017). A short-term water demand forecasting model using a moving window on previously observed data. Water, 9(3), 172.
Pegram, G., Conyngham, S., Aksoy, A., Dıvrak, B. B., & Öztok, D. (2014). Türkiye’nin su ayak izi raporu: Su, üretim ve uluslararası ticaret ilişkisi. İstanbul: WWF Türkiye.
Peña-Guzmán, C., Melgarejo, J., & Prats, D. (2016). Forecasting water demand in residential, commercial, and industrial zones in Bogotá, Colombia, using least-squares support vector machines. Mathematical Problems in Engineering, 2016.
Sampathirao, A. K., Grosso, J. M., Sopasakis, P., Ocampo-Martinez, C., Bemporad, A., & Puig, V. (2014). Water Demand Forecasting for the Optimal Operation of Large-Scale Drinetworks: The Barcelona Case Study. IFAC Proceedings, 47(3), 10457-10462.
Seo, Y. H., Sung, J. H., Park, J. S., Kim, B. S., & Park, J. (2025). Future residential water use and management under climate change using Bayesian neural networks. Water, 17, 2179.
Meteoroloji Genel Müdürlüğü (2022). 2021 Yılı İklim Değerlendirmesi. Erişim adresi: https://mgm.gov.tr/FILES/iklim/yillikiklim/2021-iklim-raporu.pdf .
Tiwari, M. K., & Adamowski, J. F. (2015). Medium-term urban water demand forecasting with limited data using an ensemble wavelet–bootstrap machine-learning approach. Journal of Water Resources Planning and Management, 141(2), 04014053.
TÜİK (2009). TUİK Veri). TUİK Su İstatistikleri https://data.TÜİK.gov.tr/Search/Search?text=Belediye%20Su%20%C4%B0statistikleri [Erişim tarihi: 10 Şubat 2024].
TÜİK (2013). TUİK Veri Portalı: Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, https://data.TÜİK.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2012-13425 [Erişim tarihi: 10 Şubat 2024].
TÜİK (2020). TUİK Veri Portalı: Kaynağına göre Çekilen Su Miktarı https://data.tuik.gov.tr/Kategori/GetKategori?p=Cevre-ve-Enerji-103 [Erişim tarihi: 10 Şubat 2024].
TÜİK (2021). TÜİK Veri Portalı: Belediye Su İstatistikleri https://data.TÜİK.gov.tr/Search/Search?text=Belediye%20Su%20%C4%B0statistikleri [Erişim tarihi: 10 Şubat 2024].
TÜİK (2023). TUİK Veri Portalı: Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, https://data.TÜİK.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2022-49685 [Erişim tarihi: 10 Şubat 2024].
TÜİK (2023) TUİK Veri Portalı: Dış Ticaret İstatistikleri, https://data.TÜİK.gov.tr/Search/Search?text=d%C4%B1%C5%9F%20ticaret%20istatistikleri [Erişim tarihi: 10 Şubat 2024].
Vijai, P., & Sivakumar, P. B. (2018). Performance comparison of techniques for water demand forecasting. Procedia computer science, 143, 258-266.
Vijayalaksmi, D. P., & Babu, K. J. (2015). Water supply system demand forecasting using adaptive neuro-fuzzy inference system. Aquatic Procedia, 4, 950-956.
Walker, D., Creaco, E., Vamvakeridou-Lyroudia, L., Farmani, R., Kapelan, Z., & Savić, D. (2015). Forecasting domestic water consumption from smart meter readings using statistical methods and artificial neural networks. Procedia Engineering, 119, 1419-1428.
Yalçıntaş, M., Bulu, M., Küçükvar, M., & Samadi, H. (2015). A framework for sustainable urban water management through demand and supply forecasting: The case of İstanbul. Sustainability, 7(8), 11050-11067.
Yaşar, A., Bilgili, M., & Şimşek, E. (2012). Water demand forecasting based on stepwise multiple nonlinear regression analysis. Arabian Journal for Science And Engineering, 37, 2333-2341.
Yurdusev, M. A., & Fırat, M. (2009). Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey. Journal of Hydrology, 365(3-4), 225-234.
Zhou, S. L., McMahon, T. A., Walton, A., & Lewis, J. (2000). Forecasting daily urban water demand: a case study of Melbourne. Journal of Hydrology, 236(3-4), 153-164.
Zubaidi, S. L., Al-Bugharbee, H., Muhsin, Y. R., Hashim, K., & Alkhaddar, R. (2020). Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. In IOP Conference Series: Materials Science and Engineering, 888 (1) p. 012018). IOP Publishing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Third Sector Social Economic Review

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




