A Spatial Optimization Model of Social Housing

Authors

DOI:

https://doi.org/10.63556/tisej.2025.1708

Keywords:

Optimization, housing, Planning, Social Policy

Abstract

Bu çalışmada, konut piyasasındaki fiyat etkileşimlerinin mekânsal bir çerçeve içinde açıklanması amaçlanmaktadır. Sunulan mekânsal model, sosyal konutlar ile lüks konutlar arasındaki ortalama Öklidyen mesafeyi konut fiyatlarıyla ilişkilendirmektedir. Mükemmel olmasa da, görece daha ucuz bir alternatif mevcut olduğunda, pahalı mal veya hizmetler üzerinde fiyat baskısı oluşur. Ayrıca konutların maliyeti ve dolayısıyla fiyatı, arsa fiyatına bağlıdır. Lüks konut kümelerine yakın arsalar genellikle daha pahalıdır. Bu nedenle, amacı hem mümkün olduğunca fazla sayıda sosyal konut üretmek hem de konut fiyat endeksini düşük tutmak olan bir sosyal planlayıcı, ikili bir optimizasyon problemiyle karşı karşıyadır. Başka bir deyişle, planlayıcı sosyal konutları öyle bir şekilde yerleştirmelidir ki, sosyal konut sayısı maksimuma ulaşırken konut fiyat endeksi mümkün olan en düşük seviyede tutulabilsin. Bu model, sosyal adalet ile ekonomik sürdürülebilirlik arasında denge kurmaya yönelik sistematik bir yaklaşım sunmaktadır. Gelecek araştırmalar, nüfus artışı ve göç gibi dinamik faktörlerin modele dâhil edilmesini ve modelin farklı kentsel bağlamlarda uygulanarak uyarlanabilirliğinin test edilmesini içermelidir. Mekânsal planlamayı ekonomik ve sosyal hedeflerle uyumlu hâle getirerek, bu araştırma sürdürülebilir kentsel kalkınma ve adil konut politikası için veriye dayalı bir bakış açısı sunmaktadır.

References

Allen, J., Amano, R., & Gregory, A. W. (2009). Canadian City Housing Prices and Urban Market Segmentation. The Canadian Journal of Economics / Revue Canadienne d’Economique, 42(3), 1132–1149.

Bajari, P., Chan, P., Krueger, D., & Miller, D. (2013). A Dynamic Model of Housing Demand: Estimation and Policy Implications. International Economic Review, 54(2), 409–442.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and algorithms (3rd ed.). Wiley.

Beltrattia, A., & Morana, C. (2010). International house prices and macroeconomic fluctuations. Journal of Banking and Finance, 34(3), 533-545.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

Case, B., Goetzmann, W., & Rouwenhors, K. (2000). Global Real Estate Markets - Cycles and Fundamentals. NBER Working Paper(No. w7566).

Chen, Y., Wu, G., Chen, Y., & Xia, Z. . (2023). Spatial location optimization of fire stations with traffic status and urban functional areas. Applied Spatial Analysis and Policy, 16(4), 771–788, https://doi.org/10.1007/s12061-023-09502-5.

Church, R. L. (1990). The regionally constrained p-median problem. Geographical Analysis(22), 22-32.

Church, R. L., & Murray, A. T. (2009). Business site selection, location analysis and GIS. New York: Wiley.

de Bandt, O., Barhoumi, K., & Bruneau, C. (2010). The international transmission of house price shocks. Working papers, Banque de France.

de Smith, M. J., Longley, P. A., & Goodchild, M. F. (2011). Geospatial analysis—A comprehensive guide. Retrieved January 2, 2025, from https://www.spatialanalysisonline.com/index.html

Densham, P. J., & Rushton, G. (1988). Decision support systems for locational planning. In R. G. College and H. Timmermans (Ed.), Behavioural modelling in Geography and Planning (pp. 56-90). London: Croom Helm.

Duca, J. V., Muellbauer, J., & Murphy, A. (May 2011). House Prices and Credit Constraints: Making Sense of the US Experience, . The Economic Journal, 121(552), 533–551, https://doi.org/10.1111/j.1468-0297.2011.02424.x.

Gong, Y., de Haan, J., & Boelhouwer, P. (2016). Interurban house price gradient: Effect of urban hierarchy distance on house prices. Urban Studies, 53(15), 3317–3335.

Goodchild, M. F., & Massam, B. H. (1969). Some leastcost models of spatial administrative systems in southern Ontario. Geografiska Annaler, 52(B), 86–94.

Goodman, A. C. (1977). A Comparison of Block Group and Census Tract Data in a Hedonic Housing Price Model. Land Economics, 53(4), 483–487.

Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P. (2014). Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria. Urban Studies, 51(2), 390–411.

Hillier, F. S., & Lieberman, G. J. (2014). Introduction to operations research (10th ed.). McGraw-Hill Education.

Hillsman, E. L. (1984). The p-median structure as a unified linear model for location-allocation analysis. Environment and Planning, A(16), 305-318.

Iacoviello, M. (2005). House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle. American Economic Review, American Economic Association, 95(3), 739-764, DOI: 10.1257/0002828054201477.

Immergluck, D. (2011). From risk-limited to risk-loving mortgage markets: origins of the U.S. subprime crisis and prospects for reform. Journal of Housing and the Built Environment, 26(3), 245–262.

Lark, R. M. (2016). Multi-objective optimization of spatial sampling. Spatial Statistics(18), 412–430, https://doi.org/10.1016/j.spasta.2016.09.001.

Li, S. H., & Bao, H. X. (2017). House Price Determinants: The Roles of Fundamentals and Sentiments. , 20(1), . Journal of Real Estate Practice and Education, 20(1), 63–77, https://doi.org/10.1080/10835547.2017.12091770.

Li, Y.; Liao, C.; Li, X.; Guo, R. (2024). Understanding regional structure through spatial networks: A simulation optimization framework for exploring balanced development. Habitat International(152), 103-155, https://doi.org/10.1016/j.habitatint.2024.10.

Ling, D. C., Ooi, J. T., & Le, T. T. (2015). Explaining House Price Dynamics: Isolating the Role of Nonfundamentals. Journal of Money, Credit and Banking, 47(51), 87–125.

Miller, H. J., & Wentz, E. A. (2003). Representation and spatial analysis in geographic information systems. Annals of the Association of American Geographers, 93(3), 574-594.

Nagaraja, C. H., Brown, L. D., & Zhao, L. H. (2011). An Autoregressive Approach to House Price Modeling. The Annals of Applied Statistics, 5(1), 124–149, DOI: 10.1214/10-AOAS380.

Nystuen, J. D. (1968). Identification of some fundamental spatial concepts. In B. J. Marble (Ed.), Spatial analysis: A reader in statistical geography (pp. 35-41). Englewood Cliffs: Prentice-Hall.

Osland, L. (July 2010). An Application of Spatial Econometrics in Relation to Hedonic House Price Modeling. Journal of Real Estate Research, 32(3), 289-320.

Otrok, C., & Terrones, M. E. (September, 2004). The Global House Price Boom. World Economic Outlook, 71–89.

Peeters, D., & Thomas, I. (2000). Distance predicting functions and applied location-allocation models: Some simulations based on the lp norm and the k-median model. Journal of Geographical Systems(2), 167-184.

Poterba, J. M., Weil, D. N., & Shiller, R. (1991). House Price Dynamics: The Role of Tax Policy and Demography. Brookings Papers on Economic Activity(2), 143-203.

ReVelle, C. S., & Swain., R. (1970). Central facilities location. Geographical Analysis(2), 30–34.

Selim, S. (2008). Determinants of House Prices in Turkey: A Hedonic Regression Model. Doğuş Üniversitesi Dergisi, 9(1), 65-76.

Sirmans, G. S., Macpherson, D. A., & Zietz, E. N. (2005). The Composition of Hedonic Pricing Models. Journal of Real Estate Literature, 13(1), 3–43.

Wang, G., & Mu, W. (2024). A spatial optimization model for delineating metropolitan areas. ISPRS International Journal of Geo-Information, 13(51), https://doi.org/10.3390/ijgi13020051.

Wang, L., Yu, Z., Han, Q., Guo, B., & Xiong, H. (2018). Multi-objective optimization based allocation of heterogeneous spatial crowdsourcing tasks. IEEE Transactions on Mobile Computing, 17(7), 1637–1650, https://doi.org/10.1109/TMC.2017.2771259.

Xu, J., Ma, H., Luo, J., Huo, X., Yao, X., & Yang, S. (2019). Spatial optimization mode of China’s rural settlements based on quality-of-life theory. Environmental Science and Pollution Research(26), 13854–13866. https://doi.org/10.1007/s11356-018-3775-3.

Zhang, P., & Hou, Y. (2015). The Dynamics of Housing Price and Land Price in Urban versus Rural Contexts., 108, 1–40. Washington, DC: Proceedings. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association.

Downloads

Published

20.12.2025

How to Cite

AKGÜL, T. (2025). A Spatial Optimization Model of Social Housing. Third Sector Social Economic Review, 60(4), 4229–4244. https://doi.org/10.63556/tisej.2025.1708

Issue

Section

Research Article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.