The Reciprocal Relationship Between Artificial Intelligence Adoption and Brand Equity: An Empirical Study in Türkiye
DOI:
https://doi.org/10.63556/tisej.2025.1686Keywords:
Artifical Intelligance (AI), AI Adaptation, Resource Based View, Competetive AdvantageAbstract
In today’s increasingly digitalized business environment, the adoption of Artificial Intelligence (AI) technologies has become a strategic component of internal brand management. The purpose of this study is to examine the effect of AI Adoption (AIA) on Employee-Based Brand Equity (EBBE) based on employee perceptions and to evaluate the reciprocal relationship between these two constructs. The research was conducted using a quantitative approach with a causal (relational) survey design. Data were collected through an online questionnaire from 398 employees working in organizations in Türkiye that actively utilize AI technologies, selected through convenience sampling. In the data collection instrument, a customer-based brand equity scale developed in Türkiye was adapted for employees, and the validity of this adaptation was tested through preliminary analysis and pilot testing. The factor structure was examined using IBM SPSS for Windows v.22, followed by structural equation modeling using IBM SPSS AMOS v.24 to validate and test the proposed model. The findings indicate that AIA significantly and positively influences EBBE, and EBBE similarly exerts a significant and positive effect on AIA, revealing a bidirectional relationship between the constructs. These effects are interpreted through the Resource-Based View and Dynamic Capabilities Theory for AIA, and Organizational Identity Theory and Social Exchange Theory for EBBE. Overall, the results highlight the critical role of AI technologies in enhancing employee-based brand value and strengthening competitive advantage.
References
Aaker, D. A. (1991). Managing brand equity. New York, NY: Free Press.
Ashforth, B. E., & Mael, F. (1989). Social identity theory and organization. Academy of Management Review, 14(1), 20–39. https://doi.org/10.2307/258189
Aycan, Z. (2001). Human resource management in Turkey ‐ Current issues and future challenges. International Journal of Manpower, 22(3), 252–260. https://doi.org/10.1108/01437720110398347
Aycan, Z., Kanungo, R., Mendonca, M., Yu, K., Deller, J., Stahl, G., & Kurshid, A. (2000). Impact of Culture on Human Resource Management Practices: A 10‐Country Comparison. Applied Psychology, 49(1), 192–221. https://doi.org/10.1111/1464-0597.00010
Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.
Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50.
Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191.
Blau, P. M. (1964). Justice in social exchange. Sociological Inquiry, 34(2), 193–206.
Bley, K., Fredriksen, S. F. B., Skjærvik, M. E., & Pappas, I. O. (2022). The role of organizational culture on artificial intelligence capabilities and organizational performance. In M. Janssen, H. Lee, & M. Lind (Eds.), The role of digital technologies in shaping the post-pandemic world: Proceedings of the 21st IFIP WG 6.11 Conference on e-Business, e-Services and e-Society (I3E 2022) (pp. 13–24). https://doi.org/10.1007/978-3-031-15342-6_2
Boukis, A. & Christodoulides, G. (2020). Investigating key antecedents and outcomes of employee-based brand equity. European Management Review, 17(1), 41–55.
Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3), 185–216.
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, NY: W. W. Norton.
Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133–139.
Byrne, B. M. (2016). Structural equation modeling with AMOS (3rd ed.). New York, NY: Routledge.
Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Industrial Marketing Management, 97, 205–219.
Chen, H. (2019). Success factors impacting artificial intelligence adoption: Perspective from the telecom industry in China (Doctoral dissertation, Old Dominion University). Erişim adresi: https://digitalcommons.odu.edu/businessadministration_etds/102
Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64–73. http://dx.doi.org/10.2307/3150876
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Çınar, D. (2024). Yapay zekâ ve büyük veri analitiğinin işletmelerdeki rolü: Karar verme ve stratejik planlama üzerine bir inceleme. Turizm Ekonomi ve İşletme Araştırmaları Dergisi, 6(2), 219–229.
Dabbous, A., Aoun Barakat, K., & Merhej Sayegh, M. (2022). Enabling organizational use of artificial intelligence: An employee perspective. Journal of Asia Business Studies, 16(2), 245–266.
Danatzis, I., Field, J. M., & Subramony, M. (2025). Creating human-technology synergies at the organizational frontlines. Journal of Business Research, 200, 115562. https://doi.org/10.1016/j.jbusres.2025.115562
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96, 108–116.
De Keyser, A., Köcher, S., Alkire (née Nasr), L., Verbeeck, C., & Kandampully, J. (2019). Frontline service technology infusion: Conceptual archetypes and future research directions. Journal of Service Management, 30(1), 156–183.
DeVellis, R. F. (2017). Scale Development: Theory and Applications (4th ed.). Thousand Oaks, CA: Sage.
Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., … Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66, 102542. https://doi.org/10.1016/j.ijinfomgt.2022.102542
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., … Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 1–47.
Ergün, E. (2023). Mediator role of artificial intelligence in the impact of corporate strategies and competitive strategies on company performances (Doktora Tezi). Istanbul Commerce University, İstanbul.
Farquhar, P. H. (1989). Managing brand equity. Marketing Research, 1(1), 24–33.
Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. Journal of Business Research, 69(8), 3192–3198.
Gençtürk, F. E., Kandemir, D., Koç, Ö. T., ve Demirci, İ. C. (2010). Rekabet avantajı kuramının tanımlanması ve ölçümlenmesi. Marmara Üniversitesi Öneri Dergisi, 9(34), 13–25.
George, D., & Mallery, P. (2016). IBM SPSS Statistics 23 step by step. New York, NY: Routledge.
Gursoy, D., Malodia, S., & Dhir, A. (2022). The metaverse in the hospitality and tourism industry: An overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 31(5), 527–534. https://doi.org/10.1080/19368623.2022.2072504
Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.
Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. Journal of Management Studies, 58(5), 1159–1197.
Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations (2nd ed.). SAGE Publications Ltd.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.
Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172.
Ifinedo, P. (2012). Technology acceptance by health professionals in Canada: An analysis with a modified UTAUT model. In Proceedings of the 45th Hawaii International Conference on System Sciences (pp. 2937–2946). Los Alamitos, CA: IEEE.
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption. Information & Management, 48(1), 1–8. https://doi.org/10.1016/j.im.2010.09.001
Indrasari, M., Syamsudin, N., & Tampubolon, L. R. R. U. (2024). Enhancing SME product brand equity in the digital age as strategic approaches in the era of artificial intelligence. International Journal of Business, Law, and Education, 5(1), 1139–1152.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
Kabasakal, H., & Bodur, M. (2002). Arabic cluster: a bridge between East and West. Journal of World Business, 37(1), 40–54. https://doi.org/10.1016/S1090-9516(01)00073-6
Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review & Deloitte.
Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1–22.
Khalil, A., Agarwal, R., Yaqub, M. Z., & Papa, A. (2025). Unlocking the AI-productivity paradox in HR: Qualitative insights across organizational levels. Journal of Business Research, 199, 115456. https://doi.org/10.1016/j.jbusres.2025.115456
Khanna, T., & Palepu, K. G. (2010). Winning in emerging markets: A road map for strategy and execution. Boston, MA: Harvard Business Press.
King, C., & Grace, D. (2009). Employee-based brand equity: A third perspective. Services Marketing Quarterly, 30(2), 122–147.
King, C., & Grace, D. (2010). Building and measuring employee-based brand equity. European Journal of Marketing, 44(7/8), 938–971. https://doi.org/10.1108/03090561011047472
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). New York, NY: Guilford Press.
Kovács, E., & Horváth, I. (2025). Trust, transparency, and AI adoption in business. Acta Polytechnica Hungarica, 22(6), 81–100.
Lassar, W., Mittal, B., & Sharma, A. (1995). Measuring customer-based brand equity. Journal of Consumer Marketing, 12(4), 11–19.
Ledro, C., Nosella, A., Vinelli, A., Dalla Pozza, I., & Souverain, T. (2025). Artificial intelligence in customer relationship management: A systematic framework for a successful integration. Journal of Business Research, 199, 115531. https://doi.org/10.1016/j.jbusres.2025.115531
Levin, K. A. (2006). Study design III: Cross-sectional studies. Evidence-Based Dentistry, 7(1), 24–25.
Li, W., Cham, T. H., Zhang, Y., Loebiantoro, I. Y., & Mirzaliev, S. (2025). Breaking the virtual wall: Why do businesses resist metaverse in the retail industry? International Journal of Business and Society, 26(1), 344–365. https://doi.org/10.33736/ijbs.9567.2025
Lin, X., Meng, L., & Chen, L. (2025). Reaffirming oneself: Exploring how artificial intelligence introduction drives employee approach crafting through a self-affirmation lens. Journal of Business Research, 199, 115541. https://doi.org/10.1016/j.jbusres.2025.115541
Liu, C. H., Chou, S. F., & Lin, J. Y. (2025). Critical criteria for restaurant technology application: The interrelationship effect of influencing technology acceptance and brand equity. Journal of Marketing Analytics. Advance online publication. https://doi.org/10.1057/s41270-025-00375-w
Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947. https://doi.org/10.1287/mksc.2019.1192
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490–504.
Mardia, K. V. (1985). Mardia’s test of multinormality. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (Vol. 5, pp. 217–221). John Wiley.
Mariani, M., & Borghi, M. (2021). Customers’ evaluation of mechanical artificial intelligence in hospitality services: A study using online reviews analytics. International Journal of Contemporary Hospitality Management, 33(11), 3956–3976. https://doi.org/10.1108/IJCHM-06-2020-0622
Masnita, Y., Ali, J. K., Zahra, A., Wilson, N., & Murwonugroho, W. (2024). Artificial intelligence in marketing: Literature review and future research agenda. Journal of System and Management Sciences, 14(1), 120–140.
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.2307/258792
Meyer, K. E., & Peng, M. W. (2016). Theoretical foundations of emerging economy business research. Journal of International Business Studies, 47(1), 3–22.
Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. https://doi.org/10.1038/s42256-019-0114-4
Mutale, W., & El-Gayar, O. (2024). The impact of organizational culture on AI adoption and organizational performance: A mixed methods approach. In AMCIS 2024 TREOs (p. 18). Erişim adresi: https://aisel.aisnet.org/treos_amcis2024/18
OECD. (2023). OECD employment outlook 2023: Artificial intelligence and the labour market. Erişim adresi: https://www.oecd.org
Ojha, S. C., Gupta, R. K., Kulkarni, P., Yedake, A. V., & Khandelwal, A. (2025). The impact of AI on strategic co-branding: Enhancing brand equity through technology-driven alliances. Academy of Marketing Studies Journal, 29(4), 1–15.
Park, C. S., & Srinivasan, V. (1994). A survey-based method for measuring and understanding brand equity and its extendibility. Journal of Marketing Research, 31(2), 271–288.
Petter, S., DeLone, W., & McLean, E. R. (2013). Information systems success: The quest for the independent variables. Journal of Management Information Systems, 29(4), 7–62.
Ployhart, R. E., & Vandenberg, R. J. (2010). Longitudinal research: Theory, design, and analysis of change. Journal of Management, 36(1), 94–120.
Prentice, C., Dominique Lopes, S., & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739–756. https://doi.org/10.1080/19368623.2020.1722304
Punjaisri, K., & Wilson, A. (2007). The role of internal branding in the delivery of employee brand promise. Journal of Brand Management, 15(1), 57–70.
Rahman, M. S., Hossain, M. A., & Abdel Fattah, F. A. M. (2022). Does marketing analytics capability boost firms’ competitive marketing performance in data-rich business environment? Journal of Enterprise Information Management, 35(2), 455–480.
Richardson, H. A., Simmering, M. J., & Sturman, M. C. (2009). A tale of three perspectives. Organizational Research Methods, 12(4), 762–800.
Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Hoboken, NJ: Pearson.
Srite, M., & Karahanna, E. (2006). The role of espoused national cultural values in technology acceptance. MIS Quarterly, 30(3), 679–704. https://doi.org/10.2307/25148745
Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence (AI) in sales research and practice. Industrial Marketing Management, 69, 135–146.
T.C. Sanayi ve Teknoloji Bakanlığı, & T.C. Cumhurbaşkanlığı Dijital Dönüşüm Ofisi. (2021). Ulusal Yapay Zekâ Stratejisi 2021–2025. Erişim adresi: https://www.cbddo.gov.tr/UYZS
Teece, D. J., Peteraf, M. A., & Leih, S. (2016). Dynamic capabilities and organizational agility: Risk, uncertainty and entrepreneurial management in the innovation economy. California Management Review, 58(4), 13–35.
Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.
TRAI. (2023). TRAI üretken yapay zekâ raporu. Erişim adresi: https://turkiye.ai/wpcontent/uploads/2025/05/02-Gen-AI-Raporu_Ekim-2023.pdf
TRAI. (2025). Yapay zekâ araştırması. Erişim adresi: https://turkiye.ai/yapay-zeka-arastirmasi/
TÜBİSAD. (2024). Bilgi ve iletişim teknolojileri 2023 yılı sektörü pazar verileri. Erişim adresi: https://www.tubisad.org.tr/tr/images/pdf/tubisad-bit-2023-tr.pdf
TÜİK. (2025). Yapay zekâ istatistikleri, 2025 (Sayı: 57945). Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Yapay-Zeka-Istatistikleri-2025-57945
Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of Marketing, 68(1), 1–17.
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. Journal of Strategic Information Systems, 28(2), 118–144.
Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119–134.
Wang, E., Klein, G., & Jiang, J. J. (2007). IT support in manufacturing firms for a knowledge management dynamic capability link to performance. International Journal of Production Research, 45(11), 2419–2434.
Wirtz, J., & Pitardi, V. (2023). How intelligent automation, service robots, and AI will reshape service products and their delivery. Italian Journal of Marketing, 2023(3), 289–300. https://doi.org/10.1007/s43039-023-00076-1
Wirtz, J., & Zeithaml, V. (2018). Cost-effective service excellence. Journal of the Academy of Marketing Science, 46(1), 59–80. https://doi.org/10.1007/s11747-017-0560-7
Xu, G., Xue, M., & Zhao, J. (2023). The relationship of artificial intelligence opportunity perception and employee workplace well-being: A moderated mediation model. International Journal of Environmental Research and Public Health, 20(3), 1974. https://doi.org/10.3390/ijerph20031974
Zaijuan, X., Ramayah, T., & Yubo, S. (2025). Determinants of generative artificial intelligence adoption in insurance companies. International Journal of Business and Society, 26(1), 272–291. https://doi.org/10.33736/ijbs.9562.2025
Zeng, X., Li, S., & Yousaf, Z. (2022). Artificial intelligence adoption and digital innovation: How does digital resilience act as a mediator and training protocols as a moderator? Sustainability, 14, 1–14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Third Sector Social Economic Review

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




